1
1

Organic Analytes

Information for Organic Analytes

DGT devices, literature and diffusion coefficients for organic analytes.

Organic Analytes – recommended DGT devices, appropriate references and diffusion coefficients

Compound Diffusion coefficients D (10-6 cm2/s) (25) DGT product code Reference
Antibiotics Azithromycin 1.32 LS*C-AP [1]
Carbadox 3.79 LS*C-AP [2]
Chloramphenicol 4.57 LS*C-AP [1]
Ciprofloxacin 2.75 LS*C-AP [2]
Clarithromycin 1.95 LS*C-AP [2]
Difloxacin 3.20 LS*C-AP [2]
Enrofloxacin 2.96 LS*C-AP [2]
Erythromycin 1.76 LS*C-AP [3]
Erythromycin-H2O 1.85 LS*C-AP [2]
Fleroxacin 1.03 LS*C-AP [2]
Florfenicol 4.61 LS*C-AP [1]
Leucomycin 1.43 LS*C-AP [2]
Lincomycin 3.1 LS*C-AP [2]
Lomefloxacin 3.07 LS*C-AP [2]
Monensin 0.58 LS*C-AP [2]
Norfloxacin 2.46 LS*C-AP [2]
Novobiocin 0.80 LS*C-AP [2]
Ofloxacin 2.24 LS*C-AP [2]
Oleandomycin 1.66 LS*C-AP [2]
Ormetoprim 3.94 LS*C-AP [2]
Pefloxacin 1.92 LS*C-AP [2]
Roxithromycin 1.49 LS*C-AP [2]
Salinomycin 0.61 LS*C-AP [2]
Sulfacetamide 4.76 LS*C-AP [2]
Sulfachlorpyridazine 3.59 LS*C-AP [2]
Sulfadiazine 4.23 LS*C-AP [2]
Sulfadimethoxine 3.84 LS*C-AP [2]
Sulfadoxine 3.85 LS*C-AP [2]
Sulfaguanidine 4.51 LS*C-AP [2]
Sulfamerazine 3.79 LS*C-AP [2]
Sulfameter 4.01 LS*C-AP [2]
Sulfamethazine 4.01 LS*C-AP [2]
Sulfamethoxazole 5.10 LS*C-AP [2]
Sulfamonomethoxine 4.08 LS*C-AP [2]
Sulfanilamide 6.24 LS*C-AP [2]
Sulfapyridine 4.75 LS*C-AP [2]
Sulfaquinoxaline 3.50 LS*C-AP [2]
Sulfathiazole 4.61 LS*C-AP [2]
Sulfisoxazole 3.79 LS*C-AP [2]
Thiamphenicol 5.56 LS*C-AP [1]
Trimethoprim 3.79 LS*C-AP [2]
Tylosin 1.09 LS*C-AP [2]
BPA

bisphenols

Bisphenol A 5.03 LS*R-AT [4]
Bisphenol B 4.44 LS*R-AT [4]
Bisphenol F 5.64 LS*R-AT [4]
EDCs

Endocrine disrupting chemicals

17-α-ethynylestradiol 3.4 LS*D-AT [5]
17-β-estradiol 3.58 LS*D-AT [5]
4-tert-octylphenol 4.34 LS*D-AT [5]
Acetochlor 4.32 LS*D-AT [1]
Diethylstilbestrol 4.83 LS*D-AT [5]
Estriol 4.59 LS*D-AT [5]
Estrone 4.80 LS*D-AT [5]
Nonylphenol 4.13 LS*D-AT [5]
HPCPs

Household and personal care products

4-hydroxybenzoic acid 7.30 LS*D-AT [6]
Benzylparaben 4.97 LS*D-AT [6]
Butylated hydroxyanisole 4.25 LS*D-AT [6]
Butylated hydroxytoluene 3.67 LS*D-AT [6]
Butylparaben 5.61 LS*D-AT [6]
Heptylparaben 4.83 LS*D-AT [6]
Isopropylparaben 5.91 LS*D-AT [6]
Methylparaben 6.85 LS*D-AT [6]
Ortho-phenylphenol 5.18 LS*D-AT [6]
Propylparaben 5.92 LS*D-AT [6]
Triclocarban 3.36 LS*D-AT [6]
Triclosan 3.63 LS*D-AT [6]
Illicit drugs Amphetamine 8.38 LS*C-AP [7]
Ketamine 8.83 LS*C-AP [7]
Methamphetamine 9.28 LS*C-AP [7]
Methcathinone 7.60 LS*C-AP [8]
Ephedrine 6.62 LS*C-AP [8]
NCBs

Nitrochloro- benzenes

1-chloro-3- nitrobenzene (MNCB) 7.2 LS*D-AG [9]
1-chloro-4- nitrobenzene (PNCB) 7.44 LS*D-AG [9]
1-chloro-2 -nitrobenzene (ONCB) 7.49 LS*D-AG [9]
1-chloro-2,4- dinitrobenzene (CDNB) 7.19 LS*D-AG [9]
OPFRs

Organophosphate

Flame retardants

Tri-n-butyl-phosphate 5.32 LS*D-AT [10]
Tri-n-propyl phosphate 5.82 LS*D-AT [10]
Tris(1,3-dichloro-2-propyl)phosphate 4.63 LS*D-AT [10]
Tris(2-butoxyethyl)phosphate 4.06 LS*D-AT [10]
Tris(2-chloroethyl)phosphate 6.37 LS*D-AT [10]
Tris(2-chloroisopropyl)phosphate 5.34 LS*D-AT [10]
Pesticides and

herbicides

2,4-D 4.77 LS*D-AG [3]
Atrazine 5.67 LS*D-AG [11]
Bentazon 4.50 LS*D-AG [12]
Chloridazon 6.58 LS*D-AG [11]
Chlorpyrifos 3.42 LS*D-AG [3]
Chlorsulfuron 4.20 LS*D-AG [12]
Clmazone 5.66 LS*D-AG [11]
Clothianidin 4.22 LS*D-AG [3]
Deethylatrazine 4.26 LS*D-AG [17]
Desisopropylatrazine 4.02 LS*D-AG [17]
Diaminochlorotriazine 0.54 LS*D-AG [17]
Diazinon 3.80 LS*D-AG [3]
Diuron 5.24 LS*D-AG [13]
Ethofumesate 5.31 LS*D-AG [11]
Fluometuron 6.38 LS*D-AG [11]
Hydroxyatrazine 3.76 LS*D-AG [17]
Imidacloprid 4.59 LS*D-AG [3]
Ioxynil 5.20 LS*D-AG [12]
Isoproturon 4.93 LS*D-AG [13]
Linuron 5.7 LS*D-AG [11]
Mecoprop 5.00 LS*D-AG [12]
Pirimicarb 5.65 LS*D-AG [11]
Pyrimethanil 5.73 LS*D-AG [11]
Thiabendazole 6.17 LS*D-AG [11]
Thiamethoxam 4.17 LS*D-AG [3]
Glyphosate 3.28 LS*T-NP [16]
PFCs

Perfluorinated compounds

6:2 FTSA 4.96 LS*W-AP [14]
GenX 5 LS*W-AP [14]
PFBA 6.46 LS*W-AP [14]
PFBS 6.22 LS*W-AP [14]
PFDA 3.46 LS*W-AP [14]
PFHpA 5.87 LS*W-AP [14]
PFHpS 5.62 LS*W-AP [14]
PFHxA 5.33 LS*W-AP [14]
PFHxS 5.04 LS*W-AP [14]
PFNA 4.12 LS*W-AP [14]
PFOA 4.75 LS*W-AP [14]
PFOS 4.55 LS*W-AP [14]
PFPeA 6.06 LS*W-AP [14]
PFPeS 5.87 LS*W-AP [14]
Ps       Psychiatric

Pha      Pharmaceuticals

Alprazolam 4.76 LS*D-AT [15]
Bupropion hydrochloride 5.21 LS*D-AT [15]
Caffeine 6.42 LS*D-AT [15]
Carbamazepine 5.01 LS*D-AT [3]
Diazapam 5.1 LS*D-AT [15]
Estazolam 5.2 LS*D-AT [15]
Mirtazapine 5.22 LS*D-AT [15]
Naproxen 4.37 LS*D-AT [3]
Oxazepam 4.98 LS*D-AT [15]
Paroxetine 4.60 LS*D-AT [3]
Risperidone 4.9 LS*D-AT [15]
Temazepam 5.05 LS*D-AT [15]
Pharmaceuticals Atenolol 3.85 LS*D-AT [3]
Clofibric acid 4.28 LS*D-AT [3]
Diclofenac 4.44 LS*D-AT [3]
Fenoprofen 4.13 LS*D-AT [3]
Fluoxetine 4.38 LS*D-AT [3]
Gemfibrozil 3.58 LS*D-AT [3]
Ibuprofen 4.07 LS*D-AT [3]
Ketoprofen 3.31 LS*D-AT [3]
Metoprolol 4.38 LS*D-AT [3]
Propanolol 4.46 LS*D-AT [3]

Notes

Diffusion coefficients have been selected taking into account in house measurements and literature values. Generally there are insufficient independent measurements between laboratories to view the values as definitive. These diffusion coefficients at 25oC, D25, can be converted to a value at any temperature, ToC, within the range 0 to 35oC, DT, using the equation below. This can be readily accomplished in an Excel worksheet.

The symbol* in the product code replaces the letters, N, L or P, indicating the three different plastic housings for solution device, soil device or sediment probe respectively. The last three letters in the product code indicate the binding gel, diffusive gel and the membrane filter material.

Binding gel (before the hyphen) C – XAD18; D – HLB; R – AC; W – WAX; T – TiO2
Diffusive gel (after the hyphen) A – agarose; N – polyacrylamide
Filter membrane (last letter) G – GHP; P – PES; T – PTFE

Abbreviations

HLB                            proprietary copolymer

AC                               activated charcoal

WAX                           weak anion exchanger

GHP                           hydrophylic polypropylene

PES                             polyethersulphone

PTFE                           polytetrafluoroethylene

We have only listed products where performance is proven with a robust DGT device. Some other products can be measured with some compromises. Please enquire whether we can meet your needs.

References

  1. Xie, J. Chen, Q. Chen, C.-E.L. Chen, J. Du, F. Tan, and C. Zhou, Development and evaluation of diffusive gradients in thin films technique for measuring antibiotics in seawater. Sci. Tot. Environ.,618: (2018), 1605–1612.
  2. E. Chen, H. Zhang, G-G. Ying and K. C. Jones, Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters, Environ. Sci. Technol., 47: (2013), 13587-13593.
  3. K. Challis, M. L. Hanson, C. S. Wong, Development and calibration of an organic-diffusive gradients in thin films aquatic passive sampler for a diverse suite of polar organic contaminants. Anal. Chem. 88: (2016), 10583−10591.
  4. J-L. Zheng, D-X Guan, J. Luo, et al., Activated charcoal based diffusive gradients in thin films for in situ monitoring of bisphenols in waters, Chem., 87: (2015), 801-807.
  5. Chen, S. Pan, H. Cheng, A. J. Sweetman, H. Zhang, K. C. Jones, Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Research, 137: (2018), 211–219.
  6. Chen, Y. Li, C-E. Chen, et al., DGT passive sampling for quantitative in situ measurements of compounds from household and personal care products in waters, Environ. Sci. Technol.,51: (2017), 13274-13281.
  7. Guo, T. Zhang, S. Hou et al., Investigation and application of a new passive sampling technique for in-situ monitoring of illicit drugs in waste waters and rivers. Environ. Sci. Technol., 51: (2017), 9101−9108.
  8. Zhang, T. Zhang, S. Guo et al., Development and application of the diffusive gradients in thin films technique for simultaneous measurement of methcathinone and ephedrine in surface river water. Sci. of the Total Environ. 618: (2018), 284–290.
  9. L. Zhang, Y. Zhu, X. Xie, C. Han, H. Zhang, L. Zhou, M. Li, G. Xu, L. Jiang and A. Li, Application of diffusive gradients in thin-films for in-situ monitoring of nitrochlorobenzene compounds in aquatic environments, Water Res., 157: (2019), 292–300.
  10. Y-T. Zou, Z. Fang, Y. Li, R. Wang, H. Zhang, K. C. Jones, X-Y. Cui, X-Y. Shi, D. Yin, C. Li, Z-D. Liu, L. Q. Ma and J. Luo, Novel method for in situ monitoring of organophosphorus flame retardants in waters. Chem., 90: (2018), 10016–10023.
  11. Li, C. Chen, W. Chen, J. W. Chen, X. Y. Cai, K. C. Jones and H. Zhang, Development of a passive sampling technique for measuring pesticides in waters and soils. J. Agri. Food Chem., 67: (2019), 6397-6406.
  12. Guibal, R. Buzier, A. Charriau et al., Passive sampling of anionic pesticides using the Diffusive Gradients in Thin films technique (DGT). Anal. Chim. Acta, 966: (2017), 1-10.
  13. D. Amato, A. Covaci, R.M. Town et al., A novel active-passive sampling approach for measuring time-averaged concentrations of pollutants in water. Chemosphere, 209: (2018), 363–372.
  14. Yuan Li unpublished
  15. Fang, K. X. Li, Y. Li, H. Zhang, K. C. Jones, X. Y. Liu, S. Y. Liu, L. Q. Ma and J. Luo, Development and application of the diffusive gradients in thin-films Technique for measuring psychiatric pharmaceuticals in natural waters, Environ. Sci. Technol., 53: (2019), 11223−11231.
  16. Fauvelle, T. T. Nhu-Trang, T. Feret et al., Evaluation of titanium dioxide as a binding phase for the passive sampling of glyphosate and aminomethyl phosphonic acid in an aquatic environment, Anal. Chem. 87: 2015, 6004−6009.
  17. Li, S. Rothwell, H. Cheng, K. C. Jones and H. Zhang, Bioavailability and metabolism in a soil-crop system compared using DGT and conventional extraction techniques. Environ. Int., 130: (2019).